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The article deals with conjugate nonsteady heat exchange in coaxial channels 
during stabilized flow of a viscous incompressible liquid. The problem of the 
velocity profiles of the liquid is solved by methods of integral transformations. 
The conjugate problem of heat exchange in coaxial channels is solved by the finite- 
element method. 

The flow of a liquid and heat exchange in channels formed by coaxial cylinders, one 
inside the other, is of interest in the calculation of various heat exchangers with forward 
flow and with counterflow. This is one of the examples when it is indispensable to solve the 
problem as conjugate so as to take account the heat transfer through the pipe walls with 
the smaller diameter from a liquid flowing through the annular channels to the liquid in- 
side the cylindrical channel and vice versa. In analogy the problem can be solved for 
several coaxial channels. Heat exchange with the environment may also be regarded as 
conjugate if the conditions of heat exchange on the outer side are not specified, and the 
temperature fields in the environment can be investigated. 

Here we will confine ourselves to the case of heat exchange specified on the outer 
surface of a pipe. We denote by rl, r 2 and r3, r 4 the outer and innerradii of the outer and 
inner pipes, respectively. We will take it that in the general case the thermophysical 
parameters of the liquids flowing through the inner cylindrical and the outer annular 
channels as well as the thermophysical parameters of the coaxial pipe are different. 

The equations of motion and energy for liquids in channels are written in the form 

OU~ I OP~ + v~ / O~U~ I OU~ (1) 

PICP~ k Ot "---~z J : %~\ Or 2 + r - - - + - - ~ z 2 ,  ) i : 1 ,  3. ( 2 )  

The equations of energy in the walls are 

oh = ( o r, 1 oTj 0% ) 
ot \ Or ~ + r Or + Oz ~ 7 +  q~' ] = 2 ,  4. 

We specify the initial and boundary conditions in the form 

( 3 )  
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r = r 3 :  X3-- - 
Or 

Or 

w h e r e  T s i s  t h e  a m b i e n t  t e m p e r a t u r e .  

We t a k e  a s  s p e c i f i e d  t h e  p r e s s u r e  g r a d i e n t  

OT2 -- )~3 OT3 
Or ~ ,  T~ - T3, U3 0; 

OT3 __ 2~ OT~ 
- - ~ r  ' T 3 = T ~ ,  U 3 - 0 ;  

o~ (T~ - -  T J, 

1 OP~ _ f i ( r ,  5), 
p~ Oz 

where fi(r, t) is a function whose form is determined by external conditions. This may be 
either a step function 

[ (r, t) --  A(; (t - -  to), 

where o is Heaviside's unit function, which corresponds directly to the applied or relieved 
pressure, or a periodic function 

f (5) = A cos (~t -- %), 
o r  e l s e  f ( r ,  t )  = c o n s t ,  e t c .  

On the hydrodynamically stabilized section the velocity distributions are specified by 
the expressions [i]: 

U l o = 2 U l ( 1 - - ~ ) ,  ( 4 )  

(r~ -- r ~) In q -- 2 2 r (r2 - -  r 1) in - -  
U% : 2d~ r2 r~  

2 2 2 r2 - - r l  + (r2 -~ r2)ln rl ( 5 )  
r2  

The p r o b l e m  o f  d e t e r m i n i n g  n o n s t e a d y  v e l o c i t y  c a n  be  s o l v e d ,  e . g . ,  by  L a p l a c e ' s  o r  H a n k e l ' s  
i n t e g r a l  t r a n s f o r m a t i o n s  i n  f i n i t e  l i m i t s  s i n c e  w i t h  t h e  c o n s t a n t  t h e r m o p h y s i c a l  p a r a m e t e r s  
Pi  = c o n s t ,  v i = c o n s t  t h e  p r o b l e m  i s  l i n e a r .  

L e t  u s  e x a m i n e  how t o  f i n d  t h e  v e l o c i t y  p r o f i l e  by  H a n k e l ' s  m e t h o d  o f  f i n i t e  i n t e g r a l  
t r a n s f o r m a t i o n s  [2 ,  3] 

f l  

LI (sin, t)' = j' rK~ (sm, r) U (r, t) dr, ( 6 )  
0 

where the kernel of the integral transformation K v is determined from the solution of the 
Sturm-Liouville problem for the Bessel equation 

__d2r , 1 de I ) ~  (S 2 v+)  = 
dr" ~c r dr ~ m-- q)~ O, (7 )  

(I) v (q) = O, IDv (0) -- finite. (8) 

Since the motion in the pipe does not depend on the angle r the azimuth number v = 0, and 
as solution of Eq. (7) we have to take the Bessel function of zeroth order 

cD o (s=, r) = Ado (s,., r) 4- BYo (s=, r), (9) 

where A and B are arbitrary integration constants; J0(sm, r) is a Bessel function of the 
first kind; Y0(Sm, r) is a Bessel function of the second kind. From the boundary condition 
(8) we find B = 0, and from the second boundary condition and the solution of (9) we deter- 
mine the spectrum of the eigenvalues as roots of the function J: 
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The first neigenvalues are given in [4]. 
the integral transformation 

:o (s,~, r) :- O. 

It is more convenient to normalize the kernel of 

Ko (sin, r) (Do (sin, r)/N, 

where N is the norm determined by the relation 

r t  2 

N~-= I rdg (sm, r) dr : r l J'o (srn, G)- 
�9 2 
0 

(10) 

Consequently, the kernel of the integral transformation is written in the form 

K0 (s~, r) = Vr 4 (s~, r) 
rlJo (Sin, rl) " 

(1!)  

Then the inverse transformation is found in the form of the expansion 

~ V F J o  (s.,, r) ~ (s,., t). 
u 0 = ,'1) 

(12) 

Applying Hankel's integral transformatio~ with kernel (ii) to Eq. 
linear equation for determining the map U(sm, t): 

(i), we obtain the following 

+ s~U1-- + r Ko dU1 dKo ~ ~, 
Pa dt ~q , 

( 1 3 )  

r~ 

t) = j' rKo r) fi (r, 0 dr, 
0 

t = 0 : U~o---- .f rKo (s~, r) U~. (r) dr = V1. (sin), 
0 

(14) 

where the last term vanishes because with r = 0 it is identically equal to zero, and with 
r = r z, U I = 0. Incidentally, if there is slip on the boundary, i.e., with r = r I, U = Ui(t), 
then Eq. (13) assumes the form 

71 (Sin, t). 

The solution of the first-order equation with the right-hand side on condition (14) is found 
in the quadratures 

\ 91 / t  o 

Consequently, the_problem of determining the map of the velocity UI for any specified 
functions Ui(t), Ui0, and f is solved in principle, and from it we find the original Ul(r, t) 
by the formula 

Ul(r, t )= Ulo(sm)+ ~ e x p  - -  N s~t' dr" exp - -  ~1 s~t Ko(s~, r). ( 1 4 ' )  
m = l  0 P l  P l  

Analogously we find the solution of Eq. (i) in the region between two coaxial cylinders with 
the aid of Hankel's integral transformation whose kernel is expression (i0), where #0 contains 
both Bessel functions (9) and satisfies the first boundary conditions at both ends 

(Do (r2) - -0 ,  (Do (r3) = 0 .  

Using (15) and the solution of (9), we find the system 

(15) 
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AJo (s,., r~) + BYo (s,., r~) = O, 

AJo(sm, G ) +  BYo(S,~, G) =0,  
(16) 

which has a solution if its determinant vanishes; this yields a transcendental equation for 
determining the eigenvalues 

Jo (sin, G) Yo (sin, G) = do (s~, r3) Yo (s~, r=). 

The roots of this equation were tabulated in [4], consequently the spectrum s m of the eigen- 
values is known. From (16) we find 

B = - - A  J~ G) 
Yo(s=, r~)' 

i.e., 

r  (sin, r) = N (Jo (sin, r) Yo (s~, G) - -  Yo (sin, r) Jo (sin, r=)). 
The norm i s  d e t e r m i n e d  f rom t h e  e x p r e s s i o n  

ra 

N~ = j" rr (sin, r) dr = 

2 
_ _  f 2  "~2 [r (sin, ,3) + q)~ (s,,,, ,3)] - V  [r (s,,,, ,-~) + ,:Do ~ (s,,, ,4]. 

We apply Hankel' 

to Eq. (i) 

s integral transformation with the kernel 

Ko (Sin, r) = (Jo (sin, r) Yo (sm, r) - -  ro (sin, r) Jo (sin, Q))/N 

f3 

t 1 rKo (s=, r) [ 02U3 1 OU3 1 OU3 
L dr2 -~ r --Or + F3 fs (r, t) F3P3 Ot dr =0. 

r2 

Integrat ing by parts and using the boundary condit ions, we obtain the fol lowing equation of 
first order for determining U3(sm, t): 

where  

~. dU3 
~ .  at ' + s~U.  = P.(sm, t), 

~l,=o= u~. (~..); 
r~ 

e~ (sin, t) = ~ f f3 (r, t) ~Ko (sin, ~) dr; 
F3 

1" 2 

r3 

~7~o = ~ U"o (r) rKo (s~, r) dr. 
r2 

(17) 

Taking the solution of (13)-(14) in the form of (14') into account, we obtain an expression 
for the velocity in the form an an expansion 

i /  ) I - ' Fs s~t' -ff3(sm, t')at' exp - -  V~(r, i) = U~o(~m) + ~xp ~ . ,~ 

This solution, suitable for the specified initial velocities Ui0 
forces 

OP~ h (r, t), 
Oz 

and requiring the external 
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entails certain difficulties when used in practice, therefore, regardless of the general 
nature of the obtained closed solution, it is often of interest to investigate particular 
simplified solutions. 

Conjugate convective heat exchange in coaxial channels during hydrodynamically 
stabilized laminar flow of a liquid through them is described by the dimensionless system 
of equations (18)-(21) with the initial and boundary conditions: 

1 0 

r Or 

a Fo~ Oz 

O0___L = a~ ( 

O Fo~ a~ \ 

~p=O }: aWl. 

= a/2 09 

OWl = O, 
Oz 

OWl ~ +  1 a~w~ - - F i ,  
o; ]  ri- o+' . . . . . .  

I O r -4- JF-- 
r Or -"~r ] r ~. Ocp ~ Oz= ' 

i = l ,  3, 

1 O ( r  -~ § , ] = 2 , 4 ,  OO, ~ 1 O~O, O~O, 

r Or \ Or ] r~ Ocp 2 Oz ~ J 

Fo~=O:O~=@~=O; z = O : O ~ = O j = O ;  

_ _ =  a w ~ _  a o ~ =  ae)~_ ae)~ _ ae~ =o; 
O~ a~ aq~ aqD aq~ 

001 = ~  OO~ ; 
Or Or 

003 , )~2 302 ~3 " 

o - - 7 -  = a ;  ........... 

aro O r  

.r = rl : Wl=  0, 6) 1 = O~, %1 

r == r2 : Wa=0; @2= Oz, 

r = ra : W3=O, Oz-: O~, 

0 ~ =  T - - T o  =1, 
T~-- To 

O~ (T-- To) ~3, 
cq~ 

first boundary conditions, 

second boundary conditions, 

(18) 

(19 )  

(20) 

(2i) 

where  

AP,c ~ Fo~= ad/c=; 
Wz= UdU, o; F ,= Uio V, ' 

r = R/c; z = z'/c; Pe,=U, o c/al; a i =  as 

a2= a~; c - 2 R 6  Pt= ~ ;  

F o ~ 0 ;  z 9 0 ;  0 , 0 <  r <0,5 ;  0 <  ~ < a/2; 

here, qs and T s are the specified heat flux and temperature, respectively, on the external 
surface of the wall of the annular channel;T 0 is the temperature at the inlet to the 
channel. 

The heat carrier is regarded as homogeneous dropping liquid without proceeding 
chemical reactions, the range of temperature change is small so that the dependence of the 
thermophysical properties of the liquid and of the material of the wall on the temperature may 
be neglected. The pressure gradient along the channel axis is assumed to be constant and 
known. 

The problem is solved by the joint application of the finite element method and the 
finite difference method. In accordance with the finite element method, the first stage 
consists in the discretization of the domain of the channel section, i.e., the nodal points 
and the so-called two-dimensional simplex elements (linear elements of triangular shape) are 
determined and numbered. The basic rules concerning discretization are discussed in detail 
in [5, 6]. 
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At the subsequent stage the continuous magnitude f(r, ~, z, Fo) (temperature, velocity) 
is approximated by a discrete model which is constructed on the set of piecewise continuous 
functions f(mJ(r, @, z, Fo) determined at the final number of subregions (elements). On 
each element the sought functions (temperature, velocity) are represented in the form [5, 6] 

3 

f('~> (r, % z, Fo) ~ ~ a~ ) (z, Fo) ~F ) (r, ~), 
h = I  

where m is the number of the element; ~(~)(r, @) are functions of the shape (linear base) 

of the triangular element; a(~)(z, Fo) are the unknown nodal values of the sought function 

at the apexes of the element (in case of hydrodynamically stabilized flow a(~)(z, Fo) = const). 

To obtain a resolvent system of equations for determining the nodal values of velocity 
and temprature, the Bubnov-Galerkin method [7] is applied to the equations of motion and 
energy written for the m-th finite element. For instance, for the equation of energy in the 
heat carrier we obtain: 

~[N('~)]*[N(m)]dV('n) a{o'(m)}aFo +pelf 
v(m) V( m ) 

[N(m)],[N(m)]{W(~)} [N(m)] dV(m) a {@,(m)} _ 
0z 

v(m) 
r ar ar r ~. a,# \ aqD :: 

~ S,i" [N(m)]*[N(m)] dV(rn) 02 {O'(m)}dz~ 
v(m) 

where [N(m)]* is the matrix obtained by transposition of [N(m)]; [N (m)] is the matrix of 
shape function; integration,, is carried out with respect to the domain of the finite element 
with the number m(Vkm)). We transform: 

V(m) 

r Or [N(")] * r-0 ? 0 [N(m)] * 0 [N (m)] dV(m). 
or 

V(m) g(m) 

Using the formula of Ostrogradskii-Gauss, we find 

[N(~)], [N(~)] a {O'(m)}aFo dV(~) + Pe [N(m)]* [N(m)] {w(m)} [N(m)] dV(m) az 
v(m) V(m) 

~ (O[N(m)]* O[N (m)] I O[N(m)]* 0[N(m)] 
= - -  j , j  \ Or a ~ - F  - - y  aq~ aq~ 

{e,c m } dVCm' + 
v(m) 

+ [N(m)]* a[N<')] ds(m){o'(m)}+ [N('O]* [N(m)]dV(mJ (22) 
a n  (~) az~ ' s( m] v(m) 

where s (m) is the boundary of the m-th triangular element. Then we compose the sum [6]: 

@(r, % z, Fo)-= ~@(m)(r, % z, Fo), (23) 
m = :  1 
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Fig. I. Velocity profiles in the annular and the cylindrical channel. 

Fig. 2. Temperature distribution over the width of the annular channel: 
i) curve obtained by the present authors; 2) curve after [i]. 
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Fig. 3. Temperature distribution over the width of a cylindrical 
coaxial channel for the second boundary conditions on the external 

wall. 

Fig. 4. Temperature distribution in coaxial cylindrical channels 
(i) and in a cylindrical channel (2) with the first boundary condi- 

tions on the external wall. 

where 

0 (m) (r, ~, z, Fo) = [N (m) (r, ~)] {@'(~) (z, Fo)}, 

n is the total number of triangular elements whose set constitutes the geometric discreti- 
zation of the domain of the channel cross section. Applying (23) to Eq. (22), we have 

A a{@} + B  a{@} _ C{@} + D ~{@} + {F}. (24) 
0 Fo Oz az ~ 

In an analogous way we find the equation of motion of the liquid 

B{W} = {P}. (25)  

Here  A, B, C, D, B a r e  g l o b a l  s t r i p - t y p e  m a t r i c e s  o b t a i n e d  by summing o v e r  a l l  t h e  e l e m e n t s  

of the respective matrices in Eqs. (24)-(25). 
�9 n 

For instance, A ~ ~ A (~), , where 

A <~) = ]~  IN(')] * IN (m~] dV c'n', e t c .  
v(m) 

The vectors {F} and {P} take into account the effect of the pressure forces in the flow 
and the boundary conditions on the outer channel wall surface, respectively. 
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The system of equation (24)-(25) is solved with the aid of the difference schema with 
approximation of the second derivative with respect to the z-coordinate by Saul'ev's schema 
[8]:  

1 A { e } ~ , + , §  _g{e}~,+,  c{e}~,+, - t 
A Fo Az A Fo 

1 I 
+ B + 

Az (Az) ~ 

- _  - -  A { 0 } 7  + 

n+l D[{@}~_,--10}7 + ~ -  (@}~z+{@}~+,] + (F}~ +~, 

where i is the number of the theoretical channel section; n is the number of the theoretical 
instant. 

The following parameters were specified: 

Pe ----1000, RT = a / a i : 1 2 ,  Fl : l ,0 ,  F3=4,5. 

The thickness of the channel walls changed: 

1) q=0.20, r~=0.25, r~=0.45, r~=0,50; 
2) q :0 .20,  r2:0.22, rs=0,48, rr 

With the second boundary conditions, the heat flux qs = 2"5"104 W/m2 was specified on the 
outer wall of the annular channel. The results of the calculations are presented in Figs. 
1-4. 

Figure 1 shows the velocity profiles of the heat carrier on the hydrodynamically 
stabilized section of a cylindrical channel (F I = i) and of an annular channel (F 3 = 4.5). 
It agrees well with the analytical expressions (12) and (13), respectively. The tempera- 
ture distribution in coaxial channels with the first and second boundary conditions on 
the external wall surface of an annular channel is shown in Figs. 3 and 4. In Fig. 2, the 
theoretical temperature distribution in an annular channel with finite wall thickness 
(r 4 - r 3 = 0.02) is being compared with an analogous distribution after [i], with the wall 
thickness not taken into account. The dependence of the temperature distribution in a 
cylindrical channel on the Pc, RT, Bi numbers was dealt by us in a previous work [9]. 

NOTATION 

U, velocity of the direction z; t, time; p, density; P, pressure; Cp, specific heat; 
T, temperature; ~, thermal conductivity; D, dynamic viscosity; q, specifi c density of 
internal heat sources; ~, dissipation function; K~, ke_rnel of Hankel's integral transfor- 
mation; N, norm of Hankel's integral transformation; U(sm, t), map of velocity U(r, t); 
J0, Bessel function of the first kind; Yo, Bessel function of the second kind; W, dimen- 
sionless velocity in the direction z; c, diameter of the outer cylinder; @, dimensionless 
temperature; To, temperature at the channel inlet; Ts, qs, temperature and heat flux, 
respectively, on the surface of the outer cylinder; a, thermal diffusivity; Fo, dimension- 
less time; r, r z, dimensionless cylindrical coordinates; AP, pressure increment; Pc, 
Peclet number- m, number of the finite element; N(m), shape function of the m-th finite 
element; [N( m)], row vector of the shape function of the element with number m; {o(m)}, 
nodal values of the velocity in the channel; V (m), domain of the finite element with the 
number m; Bi, Biot number; RT = aj/a i. 

. 

2. 

3. 

4. 
5. 
6. 
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SELF-SIMILAR HEATING REGIME UPON DESTRUCTION 

OF THE SURFACE OF MATERIALS 

Yu. V. Polezhaev and G. A. Frolov UDC 536. 212.3 

The applicability of the dependence A* % K/~a~ in mass transfer from the surface of 
heat insulating materials is experimentally demonstrated. A formula for calculating 
the temperature coefficient K is suggested. 

In the classical theory of heat conduction the notion of self-similar heating is widely 
used; this means that a dimensionless Fourier number becomes the single variable determining 
the process of heat propagation. It is believed that to establish this regime, it is 
necessary that the temperature of the outer, heated surface be maintained constant and 
that mass transfer from the surface either by nonexistent, or that its rate be inversely 
proportional to the square root of the time. 

However, the self-similar solution for a semiinfinite body not subject to destruc- 
tion and with constant temperature T w = Tp = const [i] 

O*-- T*--To -- erfc(  Y ) (1) 
T~-- To 2]/~-~ 

satisfies even more complex variants of thermal loading. For instance, according to the 
calculations by A. V. Vasin, when the surface temperature changes trapezoidally, the depth of 
heating 6 T is described by the "almost" self-similar expression 

6T ~ K V ~ ,  (2) 
if m/(e + n) > 2. Here, 

K =O*-~ (3) 
e, n are the heating and cooling sections, respectively, and m is the section with the tempera- 
ture T w = const. 

In distinction to the classical self-similar regime, in the experiments of [2] a 
quasisteady velocity of surface mass transfer was observed. The time of establishing 
such a velocity was about one fifth of the time T6, nevertheless, in the time interval x <_ x~ 
the distance through which the isotherm of phase transformations passed obeyed the dependence 
type (2). In these experiments the quasisteady velocity of mass transfer changed to a multiple 
while the surface temperatures were practically equal. However, the overall amount of heated 
and removed material within the same time of heating remained the same within the accuracy 
of the experiment. Such conditions of destruction were attained by testing specimens in air 
and nitrogen plasma and under radiative heating. It may consequently be assumed that the 
regularity of change in velocity of the outer surface has no effect on the rate of displacement 
of the isotherm of phase transformations in the time interval x <_ r 6. 
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